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INTRODUCTION: Figure 1. A general pipeline for multi-objective MIL with a Transformer
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histopathology labels
describe tissue properties of the entire biopsy core, and ROI labels are only an approximation of the true
distribution of cancer. Multiple instance learning (MIL) approaches to PCa detection from ultrasound have

recently been propos.ed as a solution Table 1. Comparison of our method to various MIL and ROI-scale baselines
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ROI-scale predictions.
METHODS: We use 6607 biopsy cores collected from 693 patients who underwent prostate biopsy in five
centers under the guidance of Trans-rectal ultrasound (TRUS). To mitigate label imbalance, we undersample the
benign cores during training in order to ensure the dataset has an equal amount of benign and cancerous cores.
We compare 2 models for ROI feature extraction: the ResNet18 [2] and the Compact Convolutional Transformer
(CCT) [3]. We pre-train each model using self-supervised learning [4], then finetune them on the task of
ROI-scale PCa detection. We then use the models as feature extractors and train a MIL feature aggregator on top
of the extractor’s learned representations, using both cross-entropy (CE) loss and multi-objective (MO) loss.
This workflow is shown in Figure 1. RESULTS: Our results are shown in Table 1. Among ROI-scale baselines
with linear finetuning, the ResNetl18 model achieves the highest Area Under the ROC Curve (AUROC). Both
MIL models outperform the ROI-scale baselines, with the MO+MIL model obtaining the highest AUROC and
Balanced Accuracy scores of 77.9 and 71.1 respectively.

CONCLUSION: Multi-objective learning combined with MIL has the potential to improve PCa detection in
ultrasound data. REFERENCES: [1] Gilany et al., JCARS 2023 [2] He et al., CVPR 2016 [3] Hassani et al.,
arXiv preprint [4] Bardes et al., ICLR 2022
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