Using Deep Learning to Localize Errors in Student Code Submissions

Shion Fujimori Mohamed Harmanani Owais Siddiqui Lisa Zhang

Goal

Build Deep Learning models that automatically highlight errors in student submissions to CS1 Python coding problems.

Questions

- 1. Can we build deep learning models that automatically highlight errors in student submissions to CS1 Python coding problems?
- 2. To what extent can an automated metric effectively measure the models' ability to localize errors?

Data and Context

We use the submissions to Python programming problems from our CS1 course from 2015-2019 to train and test our models.

We focus on 3 of the programming problems

Data Collection

Correct submission

Problems

```
def contains_no_lowercase_vowels(phrase: str) -> bool:
    """ Problem A
    Return True iff (if and only if) phrase does not contain any lowercase vowels.
```

```
>>> contains_no_lowercase_vowels('syzygy')
True
>>> contains_no_lowercase_vowels('abc')
False
"""
```

```
def check_password(passwd: str) -> bool:
    """ Problem C
    A strong password has a length greater than or equal
    to 6, contains at least one lowercase letter, at
    least one uppercase letter, and at least one digit.
    Return True iff passwd is considered strong.
    >>> check_password('I<3cs1!!!')
    True
    """</pre>
```

```
def count_non_digits(s: str) -> int:
    """ Problem B
    Return the number of non-digits in s.
    >>> count_non_digits('abc12d')
    4
    >>> count_non_digits('135')
    0
```

```
11 11 11
```


	Number of data pairs						
Problem:	Α	В	С	All			
Training (2015-2018)	2,593	2,586	2,011	15,006			
Testing (2019)	566	656	568	1,793			

Deep Learning Models we explore

Evaluation Method

Two types of issues

Evaluation Method

Two evaluation metrics to measure the model performance:

- 1) AUC score
- 2) Human evaluation score

Employ a human evaluation strategy to verify that AUC scores correlate with real-world performance

Human Evaluation Rubric

Behaviour	Score
 One correct issue highlighted No incorrect issues highlighted 	1.0
 The model highlights all or parts of an issue, AND The model highlights a small number of irrelevant tokens 	0.5
 The main issue is not highlighted OR There are many irrelevant issues highlighted 	0.0

```
def contains_no_lowercase_vowels (phrase : str) -> bool :
    for ch in phrase :
        if ch in vowels :
            return False
        return True
```

RNN output on Problem A

Human Evaluation Rubric

Behaviour		
 One correct issue highlighted No incorrect issues highlighted 	1.0	
 The model highlights all or parts of an issue, AND The model highlights a small number of irrelevant tokens 	0.5	
 The main issue is not highlighted OR There are many irrelevant issues highlighted 	0.0	

def count_non_digits(s: str) -> int:

```
non_digits = 0
for char in s:
    if char != in '0123456789':
        non_digits += 1
return non_digits
```

CodeBERT output on Problem B

Human Evaluation Rubric

Behaviour			
 One correct issue highlighted No incorrect issues highlighted 	1.0		
 The model highlights all or parts of an issue, AND The model highlights a small number of irrelevant tokens 			
 The main issue is not highlighted OR There are many irrelevant issues highlighted 	0.0		

```
def check_password (passwd : str) -> bool :
    if len (passwd) < 6 :
        return False
    if passwd.islower () :
        return False
    if passwd.islower () :
        return False
    if passwd.isalpha () :
        return False
    if passwd.isdigit () :
        return False
    return False
    return True</pre>
```

RNN output on Problem C

Human Evaluation - Syntactic

Model	Syntactic Test Set				
Problem:	Α	B	С		
RNN	0.57	0.66	0.09		
RNN-Pretrain	0.80	0.87	0.64		
CodeBERT-Transfer	0.55	0.57	0.25		
CodeBERT-TransferPretrain	0.69	0.86	0.56		

Human Evaluation - Semantic

Model	Semantic Test Set				
Problem:	Α	B	С		
RNN	0.46	0.61	0.05		
RNN-Pretrain	0.68	0.79	0.34		
CodeBERT-Transfer	0.58	0.81	0.44		
CodeBERT-TransferPretrain	0.71	0.82	0.53		

Test AUC - Syntactic

Model	٦	Fest AU	С	Human Evaluation Score			
Problem:	Α	В	С	Α	В	С	
RNN	0.91	0.90	0.72	0.57	0.66	0.09	
RNN-Pretrain	0.91	0.92	0.81	0.80	0.87	0.64	
CodeBERT-Transfer	0.93	0.91	0.77	0.55	0.57	0.25	
CodeBERT-TransferPretrain	0.95	0.91	0.80	0.69	0.86	0.56	

Test AUC - Semantic

Model	Test AUC		Human Evaluation Score			
Problem:	Α	В	С	Α	В	С
RNN	0.92	0.88	0.75	0.46	0.61	0.05
RNN-Pretrain	0.93	0.89	0.81	0.68	0.79	0.34
CodeBERT-Transfer	0.92	0.91	0.76	0.58	0.81	0.44
CodeBERT-TransferPretrain	0.92	0.92	0.81	0.71	0.82	0.53

Conclusion

- Deep Learning models are able to localize errors in student code, with different levels of success
 - Our models performed well on easy problems, but struggled on harder problems
- Automated metrics like AUC may provide limited insights into a model's real-world performance and behaviour
 - Human evaluation should be taken into account when building Deep Learning tools in a CS Education context

Thank you for listening!

Contact Information

- Shion Fujimori -University of Toronto Email: <u>shion.fujimori@mail.utoronto.ca</u>

- Lisa Zhang -University of Toronto Mississauga Email: <u>lczhang@cs.toronto.edu</u>

